
DIFFUSION-CONTROLLED EVAPORATION OF A MOVING DROPLET 
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The problem of the quasisteady diffusion-controlled evaporation of a droplet mov- 
ing in a viscous medium is solved numerically. The relative values of the drop- 
let radius and velocity are determined, along with the total droplet evaporation 
time and the mass-transfer characteristics of the droplet and the medium. 

The problem of the quasisteady evaporation of a spherical droplet in the presence of 
diffusion, where the rate of evaporation is limited by vapor mass transfer, was first inves- 
tigated for evaporation in a nonmoving medium by Maxwell, who derived the following equation 
for the variation of the droplet radius R as a function of the evaporation time t [i]: 

,e = 2 D  ( q  _ C,.). ( l )  
Pi 

It is assumed that the temperature of the droplet remains constant and the saturated vapor 
concentration Cs obeys the condition C s << 01, where 0i is the density of the droplet liquid. 

Several papers ([2, 3] and others) analyze the evaporation problem for a droplet at 
rest relative to the external medium in a more general setting with regard for the presence 
of Stefan flow, the unsteadiness of the process due to heating of the droplet, and the vari- 
able physical properties of the droplet and the medium. 

The motion of the evaporating droplet as a whole relative to the external medium exerts 
a significant influence on the evaporation process, but the problem then becomes much more 
complex to solve and must be analyzed under certain simplifying assumptions. The fundamental 
assumption is that the motion of the droplet is quasisteady, i.e~ the resistance of the 
medium does not depend on the acceleration of the droplet. Moreover, it has been shown [4] 
that the reactive force due to the nonuniform transport of vapor from the surface of the 
droplet can be neglected and, given the assumption that po/p << I, where po is the partial 
pressure of the vapor on the droplet surface and p is the total pressure of the medium, 
Stefan flow can be neglected [I]. 

Along with these assumptions, we assume in the present study that the physical proper- 
ties of the droplet liquid and the external medium are constant and the motion is axisymmetri- 
cal. The vapor concentration on the surface of the droplet is considered to be constant 
and equal to the saturation concentration Cs, and the temperature of the droplet and the 
medium is constant. 

We solve the problem by an approximation method based on the quasisteady approach. The 
time axis O--<t <~ is partitioned into intervals ~,...,~n,... of constant length At, and 
the problem of mass transfer from a droplet moving with a constant velocity is investigated 
in each interval. The problem is solved in dimensionless variables. The dimensionless con- 
centration is C = (C ~ -- C~)/(C s -- C=) (C' is the mass concentration of the vapor). The 
characteristic scales for the velocity and length in the interval 61 are Uo and Ro (the ini- 
tial values of the droplet velocity and radius), and in ~n+1 they are U n and R n (the velocity 
and radius determined by the solution of the problem in the preceding interval). It is 
assumed that the liquid of the droplet and the external medium are Newtonian fluids. Because 
of the axial symmetry of the problem we can introduce the stream function ~ and vorticity 
to describe the flow. In a spherical coordinate system (r, 0, ~) with origin at the center 
of gravity of the droplet and polar axis 0 = 0 directed counter to the direction of motion 
of the droplet the Navier--Stokes equations in ~ and ~ have the form 

sin0[ a,~ a ( ~ i )  O,~ 0 ( e)~ ) ] =  2 E~,(~,rsine) ' (2) 
O0 Or r sin 0 Or O0 r sin 0 Re~' 
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Fig. i. 
droplet velocity (b) versus time. i) Sc = 2; 2) 0.4; 3) 8; 
5) i0; 6) 2.4. 

Fig. 2. Total evaporation time of droplet versus Re~ 
2) 10; 3) 50; 4) 100. 
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Dimensionless droplet radius (a) and dimensionless relative 
4) 1 . 6 ;  

EZ(~i) + oir sin 0 = O. 

I) Re ~ = 0; 

(3) 

The index i takes the values i = 1 for the droplet and i = 2 for the external medium; 

Or - - - f -  + r z O0 sin0 0--0' ; 

and Rei  n = 2RnUn/V i d e n o t e s  t h e  Reyno lds  numbers ,  

We augment Eqs. ( 2 ) a n d  (3) w i t h  t h e  c o n d i t i o n s  o f  n o n d i s t u r b a n e e  of  t he  f l ow  f a r  from 
the droplet, boundedness of the flow at the center of the droplet, as well as impermeability 
of the droplet surface and continuity of the velocity and tangential component of the stress 
tensor at that surface. 

The parameters governing the behavior and structure of the flow are the external 
Reynolds number Re n and the ratios between the dynamic viscosities p and the densities p 
inside and outside the droplet. 

After solving the Navier--Stokes equations with the appropriate boundary and endpoint 
matching conditions, in the same time interval we solve the steady mass-transfer problem for 
the vapor in the external medium, as described by the equation 

R;~ ( 0% OC 0~., OC )=rls inOAC (4) 
Sc - -  O0 Or Or O0 

and the boundary conditions 

C r I = 1, C:--+O 

The s o l u t i o n  of  problem (4 ) ,  

i OC dS. Sh" ~ Or 
s 

(5) 

(5) yields the Sherwood (Sc = vl/D is the Schmidt number). 
number: 
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For quasisteady evaporation limited by vapor mass transfer the droplet radius obeys the 
differential equation 

dR _ Cs--C. D Sh. (6) 

dt Pl 2R 

Assuming that R = Rn and Sh = Sh n in the interval ~n and integrating (6) in that interval, 
we obtain 

R~+l = R,, C~--C~ D Sh~A t 
2Pt R~ 

or, in dimensionless form, 

R,,~1 _ I Cs--C" ShnT, (7) 
R~ 2p~ 

where T = AtD/R~. 

The parameter Re~ +I, which corresponds to the new value of the radius Rn+~, is deter- 
mined by solving the equation of motion of the droplet as a whole, which has the following 
form without regard for the reactive force: 

d (mV) == P + F, 
dt (8) 

where  ~ i s  t h e  a b s o l u t e  v e l o c i t y ,  F i s  t h e  r e s i s t i v e  f o r c e  o f  t h e  medium F = CxwR2p2U2/2; 
U i s  t h e  r e l a t i v e  v e l o c i t y  o f  t h e  d r o p l e t ,  and P i s  t h e  f o r c e  o f  g r a v i t y .  

I t  i s  assumed i n  t h e  q u a s i s t e a d y  a p p r o x i m a t i o n  t h a t  t h e  r e s i s t i v e  f o r c e  e q u a l i z e s  t h e  
g r a v i t y  f o r c e  i n  e a c h  i n t e r v a l  6n. C o n s e q u e n t l y ,  

1/2ap~CxR~U2=: 4/3~91R3g. (9) 
From (9) we o b t a i n  

cx 32o R (i0) 
3v~ 

Equation (I0) is solved for Re2 by successive approximations. The initial approximation 
is calculated on the basis of the approximation formula proposed for the coefficient of fluid 
friction in [5], by numerical solution of the equation obtained from (i0) in this case 
for Re2. The subsequent approximations are determined from the expression 

(32o R e2 .... k : O ,  1, . . . ,  \ ' 

i n  wh ich  C k i s  the  v a l u e  o f  the  f r i c t i o n  c o e f f i c i e n t  ob ta ined  by s o l u t i o n  o f  t he  hydrodynami-  
cal proble~ for Re2 = Re2 k. 

We then determine the value of Un+~ and repeat the process of solving the Navier--Stokes 
equation with appropriate boundary and matching conditions, as well as problem (4), (5) for 
determining the new droplet radius from (7), and so on until the value of the radius is 
smaller than a prescribed number e. 

The Navier--Stokes and mass-transfer equations are solved by the method of finite dif- 
ferences with the use of alternating-direction implicit schemes similar to the schemes used 
in [6, 7]. 

The solution of the problem described above yields the Sherwood number, the dimension- 
less radius, and the dimensionless velocity of the droplet as a function of the time and the 
total evaporation time of the droplet for various values of the governing parameters of the 
problem: Re2, ~, p, Sc, ~ = (C s -- C~)/pl. It has been shown [5] that variations of the 
parameter Re~ over a wide range for fixed values of Re2 and ~ do not significantly affect 
the flow outside the droplet, and so it is assumed in the calculations that Rel = Re2 = Re. 

It follows from expression (7) that if the time dependences of the droplet radius and 
velocity are known for a certain value of the parameter ~=~*, then the dependence for other 
values of the parameter can be approximated by curves obtained from those corresponding to 
~* by a change of scale along the T axis. The scale factor is equal to the ratio~/~*. In 
this investigation the main calculations are carried out for ~* = 10 -2 . 

1153 



Inasmuch as we are investigating the problem in the quasisteady regime, in place of the 
time dependence of the Sherwood number it is practical to analyze the dependence of this 
number on the Reynolds and Schmidt numbers (for fixed values of all the other parameters). 
The values obtained for the Sherwood number by numerical solution of the problem are approxi- 
mated by the expression 

Sh =- 2 a K (ReSc)71~ �9 (ii) 
(I + 0.4 Re2/S)(l + 5Sc 5/6) 

The degree of intensification of mass transfer due to the relative motion of the drop- 
let can be characterized by the intensity factor Q, which is defined as the ratio Sh/Sho, 
where Sho is the Sherwood number for mass transfer of the stationary droplet. We then 
obtain from (ll) 

K (l~e Sc) 7 / 6 
Q = I +  ...... 

2 (1 + 0.4Re2/3)(1 + 5Sc3/9 

The intensity factor for the droplet evaporation process decreases from the initial maximum 
value, which is determined by the parameters Re ~ and Sc, to unity (Q = 1 corresponds to 
evaporation of the droplet at rest). 

The errors of the values of Sh calculated according to (ii) for K= 1.84 (for ~ = I) 
amount to not more than 5-7% relative to the values of Sh obtained by numerical solution of 
the problem, in the range of parameters where the numerical calculations are performed (Re -< 
I00, Sc--< i0). 

As Re, Sc § expression (ii) goes over to 

Sh = 2 + KORe z / =So' / s, (12) 

which is obtained by solving the external mass-transfer problem for the droplet by the 
methods of boundary-layer theory [i]. Expression (12) is also widely used for the processing 
of experimental data on the external mass transfer of a droplet [8]. The value K ~ 0.92 cor- 
responding to the given value K = 1.84 agrees with the values of K ~ given in [8], which are 
taken from various authors. 

The dependence of the Sherwood number on ~ is approximated within 5% error limits by 
an expression proposed in [8]: 

Sh(~) == (SN (0)+ ~t Sh (oo))/(1 + ~), 

where Sh(0) and Sh(~) are the values of the Sherwood number for the mass transfer of a gas 
bubble and a solid plate, respectively. 

Figure 1 gives the curves obtained for the dimensionless droplet radius R/Ro and dimen- 
sionless velocity U/Uo as a function of the evaporation time T = tD/Ro = for ~ = i, two values 
of the parameter Re ~ Re~ (solid curves) and Re ~ 50 (dashed curves), and various values 
of the parameter Sc. Curve 0 in Fig. la is plotted for Re ~ which corresponds to the 
case of droplet evaporation in a nonmoving medium and coincides with the dependence described 
by expression (i). 

The motion of the droplet relative to the external medium intensifies the mass-transfer 
process, inducing a substantial increase in the evaporation rate in comparison with the 
evaporation of the stationary droplet. Figure 2 gives the total droplet evaporation time 
T as a function of the product Re~ for various values of Re ~ Line i corresponds to the 
evaporation of the stationary droplet, where the evaporation time does not depend on the 
parameter Sc. 

NOTATION 

R, droplet radius; t, time; D, diffusion coefficient; p, density; Cs, mass concentration 
of saturated vapor; C~, mass concentration of vapor far from the droplet; C = (C' -- C~)/ 
(C s -- C~), dimensionless vapor concentration; (r, e, @), spherical coordinates; Re = 2RU/v, 
Reynolds number; Sc = ~/D, Schmidt number; Sh, Sherwood number; T = tD/R 2, dimensionless time; 
Cx, coefficient of fluid friction; m, mass of the droplet; T, total droplet evaporation time; 
~= (Cs -- C~)/OI; ~, ratio of dynamic viscosities inside and outside the droplet; Q, mass- 
transfer intensity factor. 
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MATHEMATICAL MODELING OF A TRANSIENT HEAT-CONDUCTION PROCESS 

L. S. Vorob'eva and G. N. Zhevlakov UDC 536.21 

A numerical algorithm is proposed for solution of the transient heat-conduction 
equation by the Monte Carlo method. The calculated values of the temperature 
are compared with experimental data. 

Let D be a finite domain of space (x, y, z) with boundaries F, D = D + F. 
QT = D • [0~ t~ T] with lateral surface ~ = F • [0, T] it is required to find a solution U(x, 
y, z, t) of the problem 

OU .-a{ OW +__OW q_ OWl§ (x,g,z)~D,t>O, 
ot j 

U(x, g, z, O)= g (x, V, z), (x, V, z)~ D, 

U l n = [ ( x ,  y, z, l), (x, y, z)EF,  O ~ t ~ T ,  (1) 

i n  which  ~ ,  f ,  and g a r e  c o n t i n u o u s  f u n c t i o n s  and f ( x ,  y ,  z ,  O) = g ( x ,  y ,  z) on F. 

I n  t h e  s p a c e  (x ,  y ,  z) we i n t r o d u c e  a u n i f o r m  g r i d  (xm, Yn, z l )  = (mh, nh ,  l h )  w i t h  mesh 
spacing h, representing the set of points of intersection of the planes x = mh, y = nh, z = lh, 
where m, n, I are integers. Let ~h be the set of interior nodes of the grid, i.e., nodes 
belonging to domain D, and let Yh be the set of boundary nodes, i.e., nodes belonging to F 
or lying outside the domain D and situated at a distance from r smaller than the mesh spac- 
ing. Let mh = ~h + Yh. 

We introduce a grid with respect to the variable t: ~T = {ti =iT, i=O, k+l}, where 
T is the mesh spacing and k = [T/T]_is the integer part of the number T/T. Let ~T = {ti = iT, 
i = i, k}. We denote Yhz = Yh • wT, ~hT = mh • m~, ~hT = mh • ~T. The set of nodes of the grid 
~hr situated in the hyperplane t = t i is called a layer. 

Approximating the initial heat-conduction equation by an implicit computing grid and 
putting 

�9 a/h z = 1, ( 2 )  

In the cylinder 
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